Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We discuss the results of the spectroscopic and photometric monitoring of the type IIn supernova (SN) 2023ldh. Survey archive data show that the SN progenitor experienced erratic variability in the years before exploding. Beginning May 2023, the source showed a general slow luminosity rise that lasted for over four months, with some superposed luminosity fluctuations. In analogy toSN 2009ip, we call this brightening ‘Event A’. During Event A,SN 2023ldhreached a maximum absolute magnitude ofMr = −15.52 ± 0.24 mag. The light curves then decreased by about 1 mag in all filters for about two weeks reaching a relative minimum, which was followed by a steep brightening (Event B) to an absolute peak magnitude ofMr = −18.53 ± 0.23 mag, replicating the evolution ofSN 2009ipand similar to that of type IIn SNe. The three spectra ofSN 2023ldhobtained during Event A show multi-component P Cygni profiles of H I and Fe II lines. During the rise to the Event B peak, the spectrum shows a blue continuum dominated by Balmer lines in emission with Lorentzian profiles, with a full width at half maximum velocity of about 650 km s−1. Later, in the post-peak phase, the spectrum reddens, and broader wings appear in the Hαline profile. Metal lines with P Cygni profiles and velocities of about 2000 km s−1are clearly visible. Beginning around three months past maximum and until very late phases, the Ca II lines become among the most prominent features, while Hαis dominated by an intermediate-width component with a boxy profile. AlthoughSN 2023ldhmimics the evolution of otherSN 2009ip-like transients, it is slightly more luminous and has a slower photometric evolution. The surprisingly homogeneous observational properties ofSN 2009ip-like events may indicate similar explosion scenarios and similar progenitor parameters.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract We present JWST NIRCam (F356W and F444W filters) and MIRI (F770W) images and NIRSpec Integral Field Unit (IFU) spectroscopy of the young Galactic supernova remnant Cassiopeia A (Cas A) to probe the physical conditions for molecular CO formation and destruction in supernova ejecta. We obtained the data as part of a JWST survey of Cas A. The NIRCam and MIRI images map the spatial distributions of synchrotron radiation, Ar-rich ejecta, and CO on both large and small scales, revealing remarkably complex structures. The CO emission is stronger at the outer layers than the Ar ejecta, which indicates the re-formation of CO molecules behind the reverse shock. NIRSpec-IFU spectra (3–5.5μm) were obtained toward two representative knots in the NE and S fields that show very different nucleosynthesis characteristics. Both regions are dominated by the bright fundamental rovibrational band of CO in the two R and P branches, with strong [Arvi] and relatively weaker, variable strength ejecta lines of [Siix], [Caiv], [Cav], and [Mgiv]. The NIRSpec-IFU data resolve individual ejecta knots and filaments spatially and in velocity space. The fundamental CO band in the JWST spectra reveals unique shapes of CO, showing a few tens of sinusoidal patterns of rovibrational lines with pseudocontinuum underneath, which is attributed to the high-velocity widths of CO lines. Our results with LTE modeling of CO emission indicate a temperature of ∼1080 K and provide unique insight into the correlations between dust, molecules, and highly ionized ejecta in supernovae and have strong ramifications for modeling dust formation that is led by CO cooling in the early Universe.more » « less
-
ABSTRACT JWST/NIRCam obtained high angular resolution (0.05–0.1 arcsec), deep near-infrared 1–5 $$\mu$$m imaging of Supernova (SN) 1987A taken 35 yr after the explosion. In the NIRCam images, we identify: (1) faint H2 crescents, which are emissions located between the ejecta and the equatorial ring, (2) a bar, which is a substructure of the ejecta, and (3) the bright 3–5 $$\mu$$m continuum emission exterior to the equatorial ring. The emission of the remnant in the NIRCam 1–2.3 $$\mu$$m images is mostly due to line emission, which is mostly emitted in the ejecta and in the hotspots within the equatorial ring. In contrast, the NIRCam 3–5 $$\mu$$m images are dominated by continuum emission. In the ejecta, the continuum is due to dust, obscuring the centre of the ejecta. In contrast, in the ring and exterior to the ring, synchrotron emission contributes a substantial fraction to the continuum. Dust emission contributes to the continuum at outer spots and diffuse emission exterior to the ring, but little within the ring. This shows that dust cooling and destruction time-scales are shorter than the synchrotron cooling time-scale, and the time-scale of hydrogen recombination in the ring is even longer than the synchrotron cooling time-scale. With the advent of high sensitivity and high angular resolution images provided by JWST/NIRCam, our observations of SN 1987A demonstrate that NIRCam opens up a window to study particle-acceleration and shock physics in unprecedented details, probed by near-infrared synchrotron emission, building a precise picture of how an SN evolves.more » « less
An official website of the United States government
